High-mobility group box 1 released from astrocytes promotes the proliferation of cultured neural stem/progenitor cells
نویسندگان
چکیده
Astrocytes are major components of the adult neurogenic niche and play a crucial role in regulating neural stem cell proliferation and differentiation. Following brain injury, astrocytes become reactive and release high-mobility group box 1 (HMGB1), which plays a crucial role in the inflammatory process. However, although it has been reported that HMGB1 promotes neural stem/progenitor cell (NS/PC) proliferation in the developing brain, whether HMGB1 released by reactive astrocytes regulates NS/PC proliferation remains unknown. In this study, we aimed to investigate whether HMGB1 released from reactive astrocytes enhances NS/PC proliferation and to elucidate the possible mechanisms involved in this process. To evaluate the effects of HMGB1 on NS/PC proliferation, NS/PCs were cultured in HMGB1 culture medium and astrocyte-conditioned medium with or without reactive astrocyte-derived HMGB1 by RNA interference (RNAi). To explore the possible mechanisms, the HMGB1 receptor for advanced glycation endproducts (RAGE) in the NS/PCs was blocked with anti-RAGE antibody, and c-Jun N-terminal protein kinase (JNK) in the NS/PCs was inhibited using the potent JNK inhibitor, SP600125. Our results suggested that HMGB1 released from reactive astrocytes promoted NS/PC proliferation in vitro, and the blockade of RAGE or the inhibition of the JNK signaling pathway in the NS/PCs prevented the HMGB1-induced NS/PC proliferation. Our findings demonstrated that HMGB1 released by reactive astrocytes promoted NS/PC proliferation by binding RAGE and enhancing the phosphorylation of the JNK signaling pathway. These findings support a previously described mechanism of a crosstalk between astrocytes and NS/PCs, and suggest that reactive astrocyte-derived HMGB1 plays an important role in the repair of the central nervous system following brain injury.
منابع مشابه
Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملDehydroepiandroesteron increased proliferation of neural progenitor cells derived from p19 embryonal carcinoma stem cells.
Introduction: The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblasts after aggregation and exposure to retinoic acid (RA). Dehydroepiandroesteron (DHEA) is a neurosteroid, can increase proliferation of human neural stem cell (NSC) and positively regulated the number of neurons produced. This study was initiated to assess the effect of DHEA on neural progenito...
متن کاملAstrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery.
Crosstalk between the brain and systemic responses in blood is increasingly suspected of playing critical roles in stroke. However, how this communication takes place remains to be fully understood. Here, we show that reactive astrocytes can release a damage-associated molecular-pattern molecule called high-mobility-group-box-1 (HMGB1) that promotes endothelial progenitor cell (EPC)-mediated ne...
متن کاملTrichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium
The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...
متن کاملTrichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium
The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 34 شماره
صفحات -
تاریخ انتشار 2014